A Volumetric Probability and Probability Density 38 B Conditional and Marginal Probability Densities 38
نویسنده
چکیده
In ‘inverse problems’ data from indirect measurements are used to estimate unknown parameters of physical systems. Uncertain data, (possibly vague) prior information on model parameters, and a physical theory relating the model parameters to the observations are the fundamental elements of any inverse problem. Using concepts from probability theory, a consistent formulation of inverse problems can be made, and, while the most general solution of the inverse problem requires extensive use of Monte Carlo methods, special hypotheses (e.g., Gaussian uncertainties) allow, in some cases, an analytical solution to part of the problem (e.g., using the method of least squares). ∗This text has been published as a chapter of the International Handbook of Earthquake & Engineering Seismology (Part A), Academic Press, 2002, pages 237–265. It is here complete, with its appendixes. †Niels Bohr Institute; Juliane Maries Vej 30; 2100 Copenhagen OE; Denmark; mailto:[email protected] ‡Institut de Physique du Globe; 4, place Jussieu; 75005 Paris; France; mailto:[email protected]
منابع مشابه
ON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملFractional Probability Measure and Its Properties
Based on recent studies by Guy Jumarie [1] which defines probability density of fractional order and fractional moments by using fractional calculus (fractional derivatives and fractional integration), this study expands the concept of probability density of fractional order by defining the fractional probability measure, which leads to a fractional probability theory parallel to the classical ...
متن کاملGender and the Factors Affecting Child Labor in Iran: an Application of IV-TOBIT Model
In this paper we first intend to examine the probability of falling into the realm of child labor by using conditional probability theorem. Furthermore, we will compare the extent of each factor’s effect on boys and girls using a TOBIT regression model. Finally we will analyze aspects of Iran’s labor market to assess the future ahead of the children who work at present. As the results will show...
متن کامل